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Abstract: Measurement of blood flow in tissue provides vital information for the diagnosis and
therapeutic monitoring of various vascular diseases. A noncontact, camera-based, near-infrared
speckle contrast diffuse correlation tomography (scDCT) technique has been recently developed
for 3D imaging of blood flow index (αDB) distributions in deep tissues up to a centimeter.
A limitation with the continuous-wave scDCT measurement of blood flow is the assumption
of constant and homogenous tissue absorption coefficient (µa). The present study took the
advantage of rapid, high-density, noncontact scDCT measurements of both light intensities
and diffuse speckle contrast at multiple source-detector distances and developed two-step
fitting algorithms for extracting both µa and αDB. The new algorithms were tested in tissue-
simulating phantoms with known optical properties and human forearms. Measurement results
were compared against established near-infrared spectroscopy (NIRS) and diffuse correlation
spectroscopy (DCS) techniques. The accuracies of our new fitting algorithms with scDCT
measurements in phantoms (up to 16% errors) and forearms (up to 23% errors) are comparable
to relevant study results (up to 25% errors). Knowledge of µa not only improved the accuracy
in calculating αDB but also provided the potential for quantifying tissue blood oxygenation via
spectral measurements. A multiple-wavelength scDCT system with new algorithms is currently
developing to fit multi-wavelength and multi-distance data for 3D imaging of both blood flow
and oxygenation distributions in deep tissues.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Blood flow (BF) facilitates the delivery of nutrients and oxygen to tissues and removal of metabolic
byproducts from tissues. Continuous monitoring of BF in tissue provides information to medical
professionals for the diagnosis and therapeutic monitoring of various diseases associated with
tissue ischemia, such as peripheral arterial disease, cerebral vascular disease, and various types
of wounds [1,2]. Tissue oxygenation level, on the other hand, reflects the balance between oxygen
supply (via BF) and oxygen consumption, and thus is an important biomarker for tissue hypoxia
associated with tissue injury [3,4]. Furthermore, simultaneous monitoring of BF and tissue
oxygenation allows for the estimation of tissue oxygen consumption, another crucial biomarker
for tissue pathophysiological conditions [3–5].

A wide range of imaging technologies have been developed for the assessment of tissue
hemodynamics and metabolism, including magnetic resonance imaging (MRI) [6], positron
emission tomography (PET) [7], single photon emission computed tomography (CT) [8], and
xenon CT [9]. However, these large imaging modalities are expensive and difficult to use for
continuous and longitudinal monitoring. By contrast, optical instruments are portable, inexpensive,
continuous, and fast [10–21]. Near-infrared/diffuse correlation spectroscopy (NIRS/DCS) and
corresponding diffuse optical/correlation tomography (DOT/DCT) technologies use continued
point illumination and discrete photodetectors to detect deep tissue hemodynamics (up to several
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centimeters) [4,22–36]. Conventional NIRS/DOT measures light intensity attenuations by
tissue absorption and scattering at multiple wavelengths (λ). The oxy- and deoxy-hemoglobin
concentrations are calculated from the measured tissue absorption coefficient µa(λ) [5,36]. The
relatively new DCS/DCT uses coherent point illumination and single-photon-counting avalanche
photodiode detection of temporal fluctuations of diffuse speckles for BF measurements. Although
effective, these optical systems employ limited numbers of sources and detectors, thus lacking the
combination of high temporal-spatial resolution and wide field-of-view (FOV) to image spatially
distributed tissue hemodynamics.

Use of a remote wide field illumination and 2D detection by a charge-coupled device (CCD)
or complementary metal-oxide-semiconductor (CMOS) camera achieves fast, high-resolution,
2D mapping of tissue hemodynamics in a noncontact manner. For example, conventional laser
speckle contrast imaging (LSCI) [16,17,37] and optical intrinsic signal imaging (OISI) [38] enable
noncontact 2D mapping of blood flow and oxygenation distributions, respectively. However, both
LSCI and OISI are mainly sensitive to the tissue surface with limited penetration depths (< 1
mm), therefore they are inadequate for noninvasive imaging of deep tissues hemodynamics.

Our group recently developed a noncontact, camera-based, speckle contrast diffuse correlation
tomography (scDCT) technique for 3D imaging of BF distributions in deep tissues [39–47].
In contrast to 2D surface mapping techniques (LSCI and OISI) with a wide-field illumination,
scDCT remotely scans point, coherent near-infrared light via a galvo mirror to multiple source
positions, thus enabling a deeper tissue penetration (up to ∼10 mm). scDCT employs a sensitive
scientific CMOS (sCMOS) camera to detect spatial diffuse speckle fluctuations resulting from
moving red blood cells in the microvasculature (i.e., tissue BF). The fully noncontact data
acquisition with adjustable source-detector (S-D) configuration over a flexible region-of-interest
(ROI) enables rapid, high-density, 3D imaging of BF distributions. In a recent portable scDCT
system, all electrical and optical parts are assembled into a mobile cart (23 × 23 × 41 cubic inches,
TCP23FF, Bretford, IL). scDCT system has been tested for 3D imaging of blood flow distributions
in animal brains (mice, rats, piglets) and human tissues (infant brains, wound/burned tissues,
mastectomy skin flaps) [39–47]. In some of these studies, scDCT was compared with other
established methods including laser Doppler, DCS, and fluorescence angiography; consistent
results were observed among these methods in detecting BF variations.

A limitation with continuous-wave measurements of BF is the assumption of constant
and homogenous µa(λ) and µ′s(λ) (reduced scattering coefficient) from the literature [48–50].
Although this assumption is widely accepted in DCS/DCT, inter-subject heterogeneity and
potential dynamic variations in µa(λ) and µ′s(λ) may cause errors in calculating BF variations
[51–54]. It has been shown that fitting DCS data of auto-correlation functions (g1) at multiple S-D
distances and multiple wavelengths enables simultaneous extractions of µa(λ), µ′s(λ) and blood
flow index (BFI) for a homogeneous tissue volume [51]. Because of the intrinsic relationship
between diffuse speckle contrast and auto-correlation function, it is possible to extract BFI
and optical properties from diffuse speckle contrast measurements at multiple S-D distances
and/or at multiple exposure times. For example, Valdes et al. performed speckle contrast optical
spectroscopy measurements at multiple S-D distances (5 to 20 mm with an increment of 2.5 mm)
to quantitatively fit for BFIs in tissue-simulating phantoms and human forearms [53]. Similarly,
Dragojevic et al. conducted speckle contrast optical tomographic reconstructions with multiple
S-D distances (up to 6.5 mm) for quantification of BFIs in rodent’s brains [55,56]. More recently,
Liu et al. explored extracting µa(λ), µ′s(λ), coherence factor (ß), and BFI from diffuse speckle
contrast analysis at multiple S-D distances (2.5 to 10.5 mm with an incremental step of 1 mm) and
with multiple exposure times (0.1 to 1 ms with an increment of 0.1 ms) [52]. The spectroscopic
measurements (not imaging) were made in a semi-contact manner with a source fiber in contact
with the tissue phantom. The fitting accuracy depended highly on data quality, which required
long-time data acquisition and averaging: 1000 frames at each exposure time. Their system was
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tested in tissue phantoms with known optical properties and data acquisition time was tens of
minutes for each step of multi-distance and multi-exposure measurements [52].

To overcome the limitations of existing systems, we took the advantage of rapid, high-density,
noncontact scDCT measurements of both light intensities and diffuse speckle contrasts at multiple
S-D distances and developed new algorithms for extracting both µa(λ) and BFI. The noncontact
hardware of scDCT makes data acquisition easy and fast with a high sampling density. scDCT
usually scans a point light via an electronically-controlled galvo mirror (switching time: 1 ms) to
multiple source positions and takes one or more images by the sCMOS camera at each source
position with a single exposure time of a few milliseconds per image [40–47]. The fast and
high-density sampling by the sCMOS camera sensor array (e.g., 2048 × 2048 pixels) enables
rapid tomographic imaging of tissue hemodynamic distributions with improved signal-to-noise
ratio (SNR) (via spatial data averaging) [39–46]. The optimized scDCT acquires one scanning
over multiple source positions (e.g., 9 × 9) within ∼1.5 minutes with numerous S-D pairs at
larger distances up to 20 mm, which benefits larger penetration depths.

Fig. 1. scDCT Measurement Setup and Pixel-window Definition. (a) In the phantom
test, a long coherence laser is connected to the galvo mirror through a multimode optical
fiber. The galvo mirror projects the point light to the center of the liquid phantom. A sCMOS
camera is used to capture the intensity image in a selected region of interest (ROI). (b) In
the in-vivo test, scDCT is used to collect the data from the ROI on human forearm. (c) An
illustrative raw intensity image taken from the selected ROI. The point source locates at the
center of ROI. (d) A zoom-in view of a small area around the source. A pixel-window at the
S-D distance of r0 is defined in a cluster with adjacent 50 pixels marked with the same color
(blue or red). Note that pixel windows in all directions around the source r0 are used for data
analysis.
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The focus of the present study was to demonstrate the feasibility and accuracy of our new
two-step fitting algorithms for the extraction of both µa and αDB from scDCT measurements.
Therefore, only one source located at the center of the ROI was used in this study for proof of
the concept. Data acquisition time at one source position was less than 10 seconds. The new
fitting algorithms were tested in tissue-simulating phantoms with known optical properties and
human forearms. Measurement results were compared against established NIRS/DCS techniques.
Knowledge of µa(λ) not only improved the accuracy in calculating BFI but also provides the
potential for quantifying tissue blood oxygenation via spectral measurements [36,57,58]. As
mentioned earlier, oxygenation information can be determined by measuring µa(λ) at multiple
wavelengths using NIRS principles.

2. Methods

2.1. scDCT system

Details about the patented scDCT are described elsewhere [39–47]. In the scDCT (Fig. 1(a)
and Fig. 1(b)), a point-source coherent light at 830 nm generated from a long-coherence laser
(Crystalaser, NV) was coupled through a multimode fiber (core size: 200 microns) to an
achromatic lens (AC127-019-B, Thorlabs, NJ) and a galvo mirror (GVS002, Thorlabs, NJ). The
galvo mirror projected light to desired source positions over a selected ROI. In this study, a single
source position located at the center of the ROI was used to test our new algorithms (Fig. 1(c)).

A sCMOS camera (Orca Flash 4.0LT, Hamamatsu, Japan) was used for data collection at 25
frames per second. A zoom lens (Zoom 7000, Navitar, NY) was mounted to the camera enabling
easy adjustment of ROI and F number. The camera detected diffuse light from the tissue surface
in a reflectance mode with a typical exposure time of 2 ms. A pair of polarizers (LPNIRE050-B
and LPNIRE200-B, Thorlabs, NJ) were added across the source and detection paths to reduce
direct reflection from sources. A long-pass filter (> 800 nm, 84-762, Edmund Optics, NJ) was
added in front of the zoom lens to minimize the influence of ambient light.

The speckle contrast is defined as:

Ks(r) =
σs
⟨I⟩

(1)

Here, σs and ⟨I⟩ are the spatial standard deviation and mean value of light intensities over
a pixel window of 50 pixels, respectively (Fig. 1(d)). r is the distance between the centers of
the pixel-window and source. The diffuse speckle contrast Ks(r) can be related to the temporal
auto-correlation function g1(r, τ) via the following equation [39]:

K2
s (r) =

2β
T

∫
T
0 (1 −

τ

T
) [g1(r, τ)]2dτ (2)

Here, T is the exposure time and τ is the correlation lag time. By substituting g1(r, τ) with its
analytical solution in semi-infinite geometry, a nonlinear relationship between Ks(r) and the BFI
(αDB) was derived in our previous publication [39]. Ks(r) can be then written as a function of
αDB, together with other parameters:

K2
s (r) = f (αDB, T , µa(λ), µ′s(λ), λ, β, k0, r) (3)

Here, λ is the wavelength of the source, β is the coherence factor, and k0 is the wavenumber.
αDB is a combined term representing BFI, where α is a unitless ratio of dynamic scatterers to
total scatterers and DB (unit: cm2/s) is the effective diffusion coefficient of moving scatterers.

2.2. New algorithms for extracting µa and αDB

As Ks(r) is a function of multiple parameters including αDB, µa(λ) and µ′s(λ) Eq. (3), assumptions
of optical properties (µa(λ) and µ′s(λ)) from literature may lead to errors in αDB calculations.



Research Article Vol. 12, No. 9 / 1 Sep 2021 / Biomedical Optics Express 5898

Thus, a new approach with two fitting steps is proposed here to extract both µa and αDB from
scDCT measurements: (1) µa(λ) is extracted by fitting the measured light intensities (I) at
multiple S-D distances (Fig. 2(a)) and (2) αDB is assessed by fitting the measured speckle
contrasts (Ks(r)) at multiple S-D distances (Fig. 2(b)) with the input of known µa(λ) obtained
from the first step. The influence of µ′s(λ) assumption is discussed in Section 4.

In the first step, the simplified solution of photon diffusion equation is given by [54,59,60]:

ln [I(r) r2] = I (r = 0) − r µeff (4)

Here, I(r) is the light intensity measured at the S-D separation r, and µeff is the effective
attenuation coefficient defined as:

µeff (λ) =
√︁

3 µa(λ) · µ
′
s(λ) (5)

Based on Eq. (4), ln [I(r) r2] has a linear relationship with r [54,59,60]. Thus, µeff (λ) can
be extracted by fitting the slope of logarithmic light intensities over multiple S-D separations.
By assuming µ′s(λ) from literature or acquiring µ′s(λ) from other measurements, µa(λ) can be
calculated from µeff (λ) (Fig. 2(a)) [48–50].

Fig. 2. A Two-step Approach for Extraction of µa and αDB. (a) Fitting the effective
attenuation coefficient (µeff ) from the light intensities I(r) measured at multiple S-D distances.
(b) Fitting blood flow index (αDB) from Ks2(r), measured at multiple S-D distances.

The second step is to fit αDB from the measured speckle contrasts at multiple S-D distances by
minimizing the penalty term [52,53,61,62]:

χ
2 =

Nr∑︂
i=1

[K2
m(ri,αDB) − K2

t (ri,αDB)]
2 (6)

Here, K2
m is the experimentally measured speckle contrasts and K2

t is the theoretical speckle
contrasts with an initial guess of αDB, calculated using Eq. (3). To eliminate the influence of
linear scaling factor β in Eq. (3), both K2

m and K2
t are normalized to their mean values over all the

selected r, respectively (Fig. 2(b)). The normalization cancels the constant β from calculations
[21,53].

Since there is only one wavelength (λ = 830 nm) involved in the experiments in this work, we
write µa(λ) and µ′s(λ) as µa and µ′s from here on for simplicity.

2.3. Phantom tests with varied µa and αDB

To examine performance of the new algorithms, tissue-like liquid phantom tests were first
performed (Fig. 1(a)). A glass tank was filled with a liquid solution that consisted of distilled
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water, India ink (Black India, MA) and Intralipid (Fresenius Kabi, Sweden) [40,63]. µa and αDB
were varied via ink titration and temperature variation of the liquid phantom, respectively. A
FOV of 90 × 90 mm2 was selected in the phantom center for scDCT measurements, with a single
source position fixed in the center of the FOV (Fig. 1(c)). Camera exposure time was set as 2 ms
and F# was 8. At each level of µa and αDB, 50 frames were taken by scDCT within 2 seconds for
averaging to improve SNR.

For comparison purpose, µa and αDB were also measured using an established hybrid
instrument combining a commercial NIRS device (Imagent, ISS, IL) for µa and a customized
DCS device for αDB [57,58,63,64]. NIRS and DCS data were taken by a hybrid fiber-optic probe
placing on the phantom surface immediately after scDCT measurement at each step.

Ink titration to change µa. µ′s and αDB were set up and kept as 10.2 cm−1 and around 1.15×10−8

cm2/s throughout titration steps. Indian ink was added step-by-step to create gradient increases
in µa (λ = 830 nm) from 0.04 cm−1 to 0.16 cm−1 with 0.03 cm−1 increment per step. At each
titration step, the phantom was stirred thoroughly and then rested for 2 minutes to allow for
stabilization before data collection by scDCT and NIRS/DCS.

Temperature variation to change αDB. µa and µ′s were set up and kept as 0.1 cm−1 and 10.2
cm−1 (λ = 830 nm), respectively, during temperature changes to create αDB variations. Brownian
motions of Intralipid particles (αDB) were varied via temperature changes of the phantom from
∼5°C (fridge temperature) to∼25°C (room temperature). Data were collected at each increment of
5°C using scDCT and NIRS/DCS devices, sequentially. Phantom temperature was continuously
monitored by a thermometer throughout the test.

2.4. In-vivo tests in human forearms

To validate new algorithms for in-vivo tests, resting baseline measurements were performed
in five human forearms. This study was approved by the University of Kentucky Institutional
Review Board. The subject’s forearm was secured on a table with an arm support (Fig. 1(b)). A
FOV of 60 × 60 mm2 was selected to adapt to the dimensions of forearm, while other settings
were kept the same as in the phantom tests. In total, 250 frames were taken by noncontact scDCT
within 10 seconds from the resting forearm. For comparison purpose, µa and αDB were then
measured by a contact hybrid NIRS/DCS probe placing on the same area.

2.5. Data analysis

Dark noise and shot noise were first removed from the raw scDCT images using the methods
reported previously [39–46]. Spatial speckle contrasts Ks(r) and light intensities at all directions
around the source were calculated (Fig. 1(d)). Different ranges of S-D distances were used for
data analysis to adapt different sizes of FOV: 0.25 to 35 mm for phantoms and 0.25 to 20 mm
for human forearms, with an increment of 0.5 mm. For each S-D distance r0, all pixels within
the distance range of (r0 – 0.2) mm ≤ r ≤ (r0 + 0.2) mm around the source were selected and
segmented into pixel windows consisted of 50 adjacent pixels (Fig. 1(d)). The speckle contrast
Ks(r) at each pixel window was calculated using Eq. (1). After excluding 50% outlier data (the
highest and lowest 25%), light intensities and speckle contrasts at r0 were then averaged to obtain
mean values of I(r0) and Ks(r0), respectively. Note that the outlier data removal is primarily used
to reduce the influence of spatial in-vivo tissue heterogeneity. In addition to the spatial averaging,
time-course data of I(r0) and Ks(r0) were averaged over 50 frames to further improve SNRs.

Based on experimental results (see Section 3), effective S-D distances were determined for
extracting µa and αDB using the two-step fitting algorithms Eq. (4)–6). A constant µ′s was set up
in all tissue phantoms based on the phantom recipe, while µ′s values in human forearms were
measured by the commercial NIRS device (Imagent).

The results from scDCT and NIRS/DCS measurements were compared and percentage errors
were calculated by taking NIRS/DCS measurements as standards. Linear regressions were
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conducted and Pearson correlation coefficients were calculated to evaluate correlations between
the scDCT and NIRS/DCS measurements. Paired t-tests were used to test group differences
between the two measurements. p< 0.05 was considered a statistically significant correlation
between the two measurements.

3. Results

3.1. Determination of effective S-D distances for extracting µa and αDB

Figure 3 shows typical distributions of light intensities (a and b) and speckle contrasts (c and d),
measured from a liquid phantom (µa = 0.1 cm−1, µ′s = 10.2 cm−1, and αDB = 1.28 × 10−8 cm2/s,
a and c) and a human forearm (µa = 0.25 cm−1, µ′s = 5.3 cm−1, and αDB = 0.79 × 10−8 cm2/s,
b and d). For visualization and comparison, I(r) data were normalized to the source location
(r= 0 mm) and Ks

2(r) data were normalized to the mean value of Ks
2(r) in the selected effective

S-D ranges. Although variations existed, data from the phantom and human forearm had similar
patterns.

Fig. 3. Typical Distributions of Light Intensities (Top) and Speckle Contrasts (Bottom)
in a Phantom (Left) and a Human Forearm (Right). Data in each subfigure are presented
as spatially distributed images around the source (left) and functional curves (mean± standard
deviation) against S-D distance (right). After dark noise correction, light intensities were
normalized to the source location (i.e., S-D distance= 0) and speckle contrasts were
normalized to the mean value of speckle contrasts in the effective S-D range between the two
vertical lines. The phantom properties (measured by the NIRS/DCS device): µa = 0.1 cm−1,
µ′

s = 10.2 cm−1, and αDB = 1.28 ×10−8 cm2/s. The human forearm properties (measured by
the NIRS/DCS device): µa = 0.25 cm−1, µ′

s = 5.3 cm−1, and αDB = 0.79 ×10−8 cm2/s.

Figure 4 demonstrates that noise corrections significantly improved the linearities of ln [I(r)
r2], thus extending effective S-D ranges for the phantom (a) and forearm (b), respectively. The
effective S-D ranges were empirically determined based on satisfactory of data fitting in ln
[I(r) r2] (a and b) and Ks

2(r) (c and d) to the models Eq. (4)–6), respectively. Based on our
measurement results from all tissue phantoms and human forearms, effective S-D ranges used in
this study were determined and listed in Table 1.
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Fig. 4. Dark Noise Correction and Effective S-D Range Determination. (a) and (b)
Comparison of ln [I(r) r2] (mean± standard deviation) with and without dark noise corrections
in the phantom (a) and human forearm (b). The blue line represents a linear fitting of
ln [I(r) r2] in the effective S-D ranges between the two vertical lines for extracting µa.
(c) and (d) Normalized Ks2(r) (mean± standard deviation) after noise corrections in the
phantom (c) and forearm (d). The blue line represents the model fitting of normalized
Ks2(r) in the S-D ranges between the two vertical black lines for extracting αDB. The
phantom properties: µa = 0.1 cm−1, µ′

s = 10.2 cm−1, and αDB = 1.28 ×10−8 cm2/s. The
human forearm properties: µa = 0.25 cm−1, µ′

s = 5.3 cm−1, and αDB = 0.79 ×10−8 cm2/s.

Table 1. Empirically Determined Effective S-D Ranges

Tissue-simulating Phantoms (mm) Human Forearm (mm)

Intensity I(r) 4.25–14.75 4.75 - 16.25

Ks2(r) 2.75–13.75 4.75–14.75

3.2. Phantom test results

Figure 5 shows comparison results from tissue-simulating phantoms during ink titration (a to c)
and temperature variation (d to f), measured by the scDCT and NIRS/DCS devices. During ink
titration, significant correlations were observed between the scDCT and NIRS measurements of
µa changes (linear regression: R2 > 0.99, p< 10−4; a and c). Although αDB varied slightly during
ink titration, no significant difference was observed between the scDCT and DCS measurements
of αDB (paired t-test: p= 0.36; b). The small variation in αDB might result from the influence of
small room temperature variation on Intralipid particle motions in the phantom during the test.

When creating a large temperature variation in the phantom, significant correlations were
observed between the scDCT and DCS measurements of αDB changes (linear regression:
R2 = 0.93, p< 0.01; e and f). No significant differences were observed between the scDCT and
NIRS measurements of µa (paired t-test: p= 0.62; d).

Table 2 lists all measurement results from tissue phantoms by the scDCT and NIRS/DCS
devices. scDCT measurement errors were less than 16% (assuming NIRS/DCS as the gold
standard), except one large outlier error in αDB (45.42%) at the last step of ink titration.

3.3. Human forearm test results

Figure 6 shows the results from five forearms, measured by the scDCT and NIRS/DCS devices.
There was no significant difference between the mean values of µa (paired t-test: p= 0.83;
a), measured by the two devices. A significant correlation was observed between scDCT and
NIRS measurements of µa (linear regression: R2 = 0.88, p= 0.018; b). Similarly, there was
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Fig. 5. Results from Tissue-simulating Phantoms during Ink Titration (Top) and
Temperature Variation (Bottom). Ink titration: (a) µa. (b) αDB. (c) Linear regression
between the scDCT and NIRS measurements of µa. Temperature variation: (d) µa. (e)
αDB. (f) Linear regression between the scDCT and DCS measurements of αDB.

Table 2. Phantom Test Results

µa (cm−1) αDb (×10−8 cm2/s)

NIRS scDCT Error (%) DCS scDCT Error (%)

Ink Titration

0.040 0.033 15.97 1.08 1.02 5.31

0.073 0.068 6.21 1.22 1.19 3.05

0.100 0.097 3.30 1.28 1.35 5.80

0.127 0.130 2.29 1.10 1.24 13.23

0.155 0.157 1.13 1.11 1.62 45.42

Temperature Variation

0.099 0.099 0.49 0.77 0.68 11.51

0.099 0.099 0.20 0.80 0.79 1.72

0.099 0.098 0.81 0.90 0.88 2.19

0.099 0.100 0.91 1.00 1.01 0.67

0.099 0.100 1.02 1.17 1.09 7.29
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Fig. 6. Results from Human Forearms. (a) µa (mean± standard deviation, over the
measurement period of 10 seconds), measured by the scDCT and NIRS device. (b) Linear
regression between the scDCT and NIRS measurements of µa. (c) αDB (mean± standard
deviation, over the measurement period of 10 seconds), measured by the scDCT and DCS
devices. (d) Linear regression between the scDCT and DCS measurements of αDB.

no significant difference between the mean values of αDB (paired t-test: p= 0.85; c), and a
significant correlation was observed between the two measurements of αDB (linear regression:
R2 = 0.94, p< 0.01; d).

Table 3 lists all measurement results from human forearms by the scDCT and NIRS/DCS
devices. Note that individual αDB was calculated using individual forearm µ′s, measured by the
NIRS device. scDCT measurement errors were less than 23%, assuming NIRS/DCS as the gold
standard.

Table 3. Human Forearm Test Results (n=5)

µa (cm−1) αDb (×10−8 cm2/s) µs
′ (cm−1)

NIRS scDCT Error (%) DCS scDCT Error (%) NIRS

0.286 0.335 17.13 2.04 2.37 16.39 2.49

0.251 0.245 2.32 0.79 0.74 6.639 5.26

0.314 0.288 8.28 1.14 1.06 6.87 6.03

0.105 0.098 6.50 1.30 1.00 22.95 4.65

0.304 0.278 8.50 1.71 1.92 12.38 4.21

4. Discussion and conclusions

This study developed a new approach with two fitting steps to extract both µa(λ) and BFI (αDB)
from innovative scDCT measurements of both light intensities and diffuse speckle contrasts at
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multiple S-D distances. The assessment of µa from the measured light intensities improved the
accuracy of αDB calculations from the measured speckle contrasts. Moreover, knowledge of
µa(λ) at multiple wavelengths would enable quantification of tissue blood oxygenation [36,57,58].
The noncontact camera-based hardware of scDCT makes data acquisition easy and fast with a
high sampling density, thus allowing for tomographic imaging [39–47]. Importantly, the fully
noncontact measurements improve the versatility of scDCT in clinical applications where contact
measurements may result in an infection risk or hemodynamic disruption on soft, vulnerable
tissues.

The scDCT measurements with new fitting algorithms were examined in tissue-simulating
phantoms with known optical properties and human forearms against standard NIRS/DCS
measurements. We selected S-D distance ranges for light intensity and speckle contrast analyses
based on satisfactory of data fitting in ln [I(r) r2] and Ks

2(r) to our models Eq. (4–6, and Fig. 4),
respectively. As a result, the effective S-D ranges for light intensity and speckle contrast analyses
were slightly different (Table 1). In the future, we may explore using the overlapped S-D range
for both light intensity and speckle contrast analyses.

Phantom test results measured by the scDCT and NIRS/DCS devices were correlated and
agreed well with expected values of µa and αDB based on the phantom recipe over a relatively
wide range of variations, which are commonly observed in biological tissues. Most of scDCT
measurement errors in µa and αDB were less than 16% (assuming NIRS/DCS as the gold
standard), except one large outlier error in αDB (45.42%). Compared to phantom test results,
in vivo test results in human forearms demonstrated slightly larger measurement discrepancies
between the NIRS/DCS and scDCT measurements (up to 23%). These discrepancies might
be partly attributed to temporal variation of µa and αDB since the two measurements were
taken sequentially. Tissue spatial heterogeneity might also contribute to the discrepancy as the
two measurements covered different regions with different sizes/areas. In addition, NIRS/DCS
probe-tissue contact pressure may result in tissue hemodynamic variations. The accuracies of
our new fitting algorithms with scDCT measurements of multiple parameters are comparable
to relevant study results. Up to 25% errors in fitting µa and αDB were observed during DCS
measurements at multiple S-D distances and multiple wavelengths and diffuse speckle contrast
measurements at multiple S-D distances and multiple exposure times in manipulated tissue
phantoms [51,52].

We note that use of a longer acquisition time for each measurement would improve SNR via
temporal data averaging. However, it also impacts the temporal resolution of scDCT, especially
when using multiple source positions for tomographic measurements. Moreover, possible
physiological variations in the measured tissue over a long acquisition time may bias data
collection.

In addition, we have also explored simultaneous extraction of µa, µ′s and αDB from scDCT
measurements of light intensities and speckle contrasts at multiple S-D distances. The fitting
accuracy was very sensitive to data quality and SNR (data are not shown). The crosstalk among
µa, µ′s and αDB was also observed, as founded in previous studies [52,54,61]. To compare fitting
sensitivities, we generated two noise-free reference curves (blue color): ln [I(r) r2] in Fig. 7(a)
and Ks

2(r) in Fig. 7(b), with the given parameters: µa = 0.1 cm−1, µ′s = 8 cm−1, αDB = 1 × 10−8

cm2/s, r= 4 to 15 mm. We then varied µa from 0.04 cm−1 to 0.16 cm−1 to generate more testing
curves. Apparently, variations in ln [I(r) r2] resulting from µa changes were much larger than
in Ks

2(r), indicating a better sensitivity of ln [I(r) r2] to µa changes (Fig. 7(a) and Fig. 7(b)).
By contrast, Ks

2(r) signals are intrinsically sensitive to BFI. Therefore, our two-step fitting
approach generated more robust results in µa (by fitting ln [I(r) r2]) and BFI (by fitting Ks

2(r))
than simultaneous fitting algorithms.

We recognize limitations of this pilot study in exploring new fitting algorithms for data analysis.
The small number of subjects (n= 5) impacts the study power, which will be addressed in future
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Fig. 7. Comparison of Sensitivities in Fitting µa Variations Using Light Intensities
and Speckle Contrasts. (a) A simulated reference curve of ln [I(r) r2] (blue line) generated
with the given parameters (µa = 0.1 cm−1, µ′

s = 8 cm−1, αDB = 1 × 10−8 cm2/s, S-D= 4
to 15 mm) and other simulated testing curves generated by varying µa from 0.04 cm−1 to
0.16 cm−1. (b) The simulated reference (blue line) and testing curves of Ks2(r) generated
with the same parameters as in (a).

studies. The effective S-D distances were determined manually based on the optimal fitting of
experimental data to the models (Fig. 4 and Table 1). More experiments in a larger number of
subjects are needed to generate a universally applicable method for automatic determination of
effective S-D distances for data fittings. In this study, µ′s values were obtained from the phantom
recipe or in vivo NIRS measurements. As mentioned earlier, simultaneous fitting of µa, µ′s
and αDB using the current scDCT data generated unstable results with crosstalk. In the future,
we will explore adding more wavelengths into the scDCT system and fit multi-wavelength and
multi-distance data to extract all parameters simultaneously [51]. Finally, we will also explore 3D
imaging of both blood flow and oxygenation distributions by developing a multiple-wavelength
scDCT system.
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